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An instability-wave analysis is presented to describe the spatial evolution of a 
fundamental mode and its subharmonic on an inviscid parallel mixing layer. It 
incorporates explicitly the weakly nonlinear interaction between the two modes. The 
computational finding that the development of the subharmonic, leading eventually 
to pairing or shredding, crucially depends on its phase relation with the fundamental 
is fully confirmed. Furthermore it is shown that a critical fundamental amplitude has 
to be reached before the (spatial) subharmonic becomes phase locked with the 
fundamental and exhibits a modified growth rate. Then the analysis is exploited to 
explain the occurrence of amplitude modulations in ‘natural ’ mixing layers and to 
estimate the width of the subharmonic spectral peaks. Also, the case of oblique 
subharmonic waves is briefly touched upon. In the last part, ways are explored to 
model non-parallel effects, i.e. to handle the saturation of the rapidly growing 
subharmonic. Using this wave description, the role of mode interaction in the ‘vortex 
pairing ’ and ‘shredding ’ process is assessed. 

1. Introduction 
The experimental studies directly or indirectly concerned with the interaction of 

‘coherent structures’, and in particular with ‘vortex pairing’ in the mixing layer, 
have reached now such a number that their enumeration is beyond the scope of this 
introduction. So only the early works of Wehrmann & Wille (1958), Brown & Roshko 
(1974) and Browand & Weidman (1976) are mentioned here ; for an extensive recent 
review of the subject, the paper by Ho & Hueme (1984) may be consulted. 

A common characteristic of all the experiments is that many results are quite 
accurately predicted by simple, locally parallel linear stability theory. Most 
prominent among these features are the passage frequency of ‘fully rolled up 
coherent structures’ and their spacing or phase velocity. Even the shapes of the 
disturbance velocity and vorticity profiles are often predicted with astonishing detail 
even in regions around saturation where the nonlinear roll-up of the initially linear 
instability wave is complete! This leads naturally to the question of why linear or 
‘minimally nonlinear ’ stability theory is so successful in the mixing layer, where 
disturbance levels are high and nonlinearities are thought to be prevalent. It is this 
question that provides the main motivation for the following study, which focuses in 
particular on the interaction between a fundamental and its subharmonic 
disturbance. To fix ideas, the mixing layer under study is sketched in figure 1, which 
also serves to define the coordinate system and the velocity ratio R.  

It is clear that nonlinearity has to be introduced in some form to handle mode 
interactions and the saturation of an instability wave, The different known ways of 
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FIGURE 1. The mixing layer under consideration 

doing this are briefly reviewed in the remainder of this section. First, cases are 
considered where the evolution of only one mode is followed. In order to predict 
saturation amplitudes, the weakly nonlinear approach of Stuart (1960) and Watson 
(1960) can be used, which is inherently restricted to modes close to neutral. For such 
cases it has been applied extensively to the mixing layer by Huerre (1987), Churilov 
& Shukhman (1987) and Maslowe (1977), for instance. The latter author has 
concentrated on the stratified mixing layer, where near neutrality can be obtained by 
a suitable choice of Richardson number. In all homogeneous mixing layers, however, 
disturbances start as approximately maximally amplified modes, i.e. far from 
neutral, where, owing to the inviscid inflexion point instability, they grow very 
rapidly. Therefore an amplitude expansion patterned after the weakly nonlinear 
formulation would in this case only yield non-resonant corrections to the result of 
linear theory, and would be unable to predict saturation. 

The ‘slowly diverging’ linear stability analysis, on the other hand, which 
originated from work of Bouthier (1972), has been more successful in predicting the 
amplitude evolution in mixing layers and jets, as shown by Crighton & Gaster (1976). 
The method was first used to take into account the viscous growth of the Blasius 
boundary layer. Its application to inviscidly unstable flows, on the other hand, 
requires a different interpretation. The discussion in the following is restricted to the 
mixing layer, which is known to spread (on the average) linearly with downstream 
distance. Except in an initial region, where disturbance levels are low, its divergence 
can therefore clearly not be attributed to the action of molecular viscosity alone. 
Introduction of an ‘eddy viscosity ’ proportional to x, as Gortler (1942) proposed, 
does indeed confirm the linear spreading, but the ‘mixing length ’ associated with this 
eddy viscosity turns out to  be of the order of the mixing-layer thickness. Hence the 
‘eddies ’ essentially represent the dominant instability wave and it appears that 
small-scale turbulence - less the ‘large-scale structures ’ - cannot account for the 
growth of the mixing layer. The work of Liu & Merkine (1976), and others, who 
studied the interaction of instability waves and fine-grained turbulence with an 
energy method, confirms this point. Therefore it must be concluded that the 
spreading of the mixing layer is mostly a nonlinear effect, i.e. due to ‘mean flow 
correction ’ in weakly nonlinear terminology. The slowly diverging linear approach 
should in this case really be called the ‘method of anticipated mean-flow correction’. 
Significantly, the mean-flow divergence is introduced at an earlier stage - to be 
precise, two orders in the disturbance amplitude earlier - than it appears in standard 
weakly nonlinear theory. Accordingly, the method must be considered more than 
weakly nonlinear, which makes it generally incompatible with a standard weakly 
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nonlinear approach to mode interactions. The success of the slowly diverging 
approach has been demonstrated experimentally by, among others, Gaster, Kit & 
Wygnanski (1985), who used measured mean-velocity profiles to accurately predict 
the evolution of a single mode. The ‘slightly diverging’ approach introduced by 
Huerre & Crighton (1983) also falls into this same class of methods. It introduces the 
flow divergence at  linear order in the disturbance amplitude and is, therefore, located 
in terms of ‘nonlinearity ’ between the slowly diverging and the weakly nonlinear 
approach. In 94 this method will be further discussed and incorporated in the 
modcl. 

As soon as more than one mode is present in the mixing layer, the main interest 
is i n  their interaction. While Robinson (1973) studied non-resonant interactions, this 
paper will only be concerned with the ‘dramatic’ resonant interaction relating to 
‘vortex pairing’ and ‘shredding’. The modelling of these phenomena has been 
approached both numerically and analytically. The numerical work of Patnaik, 
Sherman & Corcos (1976), Acton (1976), Riley & Metcalfe (1980), Corcos & Sherman 
(1984), and others, has all been concerned with temporally growing, i.e. spatially 
periodic mixing layers, while only a few studies, notably by Ashurst (1979) and more 
recently by Mansour & Barr (1987) and others, have dealt with the spatially 
developing mixing layer. The analytical work has been initiated by von Karmdn & 
Rubach (1912) who studied the stability of different arrangements of point vortices, 
and found then that the most dangerous instability of a single row of equal vortices 
is the subharmonic. Then, Kelly (1967) was the first to study the subharmonic 
instability in the presence of a fundamental with distributed vorticity. His temporal 
analysis predicted that the interaction would be most pronounced when the 
fundamental is close to the linearly neutral mode. It also implicitly predicted the 
strong dependence of the interaction on the phase relation between fundamental and 
subharmonic (Monkewitz 1982) in complete agreement with the numerical 
calculations mentioned above. The confirmation of Kelly’s work by Pierrehumbert 
& Widnall (1982), who studied secondary instabilities on ‘ Stuart-vortices ’ (Stuart 
1967), is noted in passing. Amplitude equations resulting from subharmonic 
resonance have also been explored in a more formal way by Redekopp (1977). 

The plan of the present paper is as follows. In  $2, Kelly’s weakly nonlinear way 
of handling the mode interactions is adapted to instability waves which develop 
spatially on a parallel hyperbolic- tangent mixing layer. Conditions are established 
for resonant interaction between a fundamental-subharmonic pair, and amplitude 
equations for the fundamental and the subharmonic are derived. In  $3,  results of this 
(locally) parallel analysis are presented. 

Then, in 94, a heuristic model is developed which, in addition to the 
fundamental-subharmonic interaction, also incorporates the effect of slight flow 
divergence. With this, i t  is possible to follow the subharmonic all the way to 
saturation and to ‘produce’ a complete pairing interaction. Finally, in 95 the results 
of this study are assessed and used to give an interpretation of ‘vortex pairing’ and 
‘shredding ’ in terms of vorticity, viz. instability waves. 

2. The instability-wave analysis for a parallel mixing layer 
In this analysis a parallel mixing layer is considered, which is disturbed a t  a 

fundamental frequency and its subharmonic, i.e. a t  half the fundamental frequency. 
Both disturbances are thereby represented by spatially developing instability waves. 
As will be shown below in detail, the situation of particular interest, which is that of 
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FIGURE 2. Comparison of the non-dimensional vorticity associated with the superposition 
$ ( O ) + a $ ( " )  (see (2.2) and (2.6)) of mean flow and neutral fundamental (solid line, using A = 1 and 
a = 0.1875) and the vorticity distribution measured by Browand & Weidman (1976). The bars 
represent the experimental asymmetry of the structure. 

resonance between fundamental and subharmonic, occurs where the fundamental is 
neutrally stable on a linear basis. On a real spatially developing mixing layer this 
location approximately coincides with the saturation location of the fundamental 
(see e.g. Ho & Huerre 1984). Hence, the physical phenomenon addressed here is the 
interaction between a spatial instability wave (the fundamental) and its subharmonic 
in a neighbourhood of the downstream station where the fundamental reaches 
maximum amplitude. 

In  order to arrive at a consistent mathematical formulation in this section, several 
simplifying assumptions are made. The first is the assumption of aparallel meanJlow, 
which may be justified by the experimental finding that highly organized (forced) 
mixing layers are approximately locally parallel around the saturation location of 
each mode in a subharmonic sequence (Ho & Huerre 1984, figure 24). A second 
simplification, already mentioned above, is achieved by describing the fundamental 
as a linear neutral wave. The connection with the experiment may be established by 
noting the excellent correspondence between the measured vorticity of a phase- 
averaged 'large-scale structure ' (Browand & Weidman 1976) and the simple linear 
superposition of mean vorticity and the vorticity associated with such a linear 
neutral disturbance of suitably adjusted amplitude (see figure 2). These mea- 
surements are also noted by Corcos & Sherman (1984) to be in excellent agreement 
with their numerical simulations (presumably after smoothing of the fine detail in 
their finite-amplitude billow). It must be said, however, that the magnitude of the 
fundamental amplitude used in figure 2 does strain the limitations of the theory that 
is developed below. 
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2.1.  Formulation of the problem 
To further simplify the problem, compressibility and viscous effects are neglected 
and the interaction between the two instability waves is assumed to be weak. Hence 
the total stream function is expanded, as in weakly nonlinear theory, in powers of a 
and p, two small parameters characterizing the fundamental and subharmonic 
amplitudes respectively. The weakest possible restrictions on a and ,8 which are 
necessary for mathematical consistency and the relevance of the theory will be 
discussed below. Keeping only terms up to quadratic order, one has 

@ = $ ( O )  + a$(a) + p@f'@) + a2$(m) + ap@(a~) + p 2 $ ( ~ B  + O(a3, . . .). (2.1) 

The zeroth-order term @(O), given below in terms of streamwise velocity, represents 
the mean flow, and is a t  this point chosen to be a parallel hyperbolic-tangent mixing 
layer, 

@$" = 1 + R tanh y .  (2.2) 

The reference velocity for the above non-dimensional expression is the average 
velocity 0 between the two streams, and R is the velocity ratio defined as R = AU/20  
with AU the velocity difference between the two streams. The reference length 
implicit in (2.2) is one half the vorticity thickness of the layer, which is the same as 
twice the momentum thickness for the hyperbolic-tangent profile. 

When focusing on the interaction between the fundamental @(a) and its 
subharmonic $(B, situations with the strongest, resonant, interactions are of primary 
interest. That is, conditions are sought where the linear modes are themselves 
modified by interactions, while the additive quadratic corrections $(aa) etc. are only 
of secondary importance. These resonance conditions arise when, formally speaking, 
the straightforward solution of the inhomogeneous equations governing the 
quadratic contributions to the stream function produces secular terms, i.e. when an 
interaction term reproduces the x-t (downstream distance-time) dependence of 
either linear mode. The interaction of particular interest here occurs at  order up, 
where the inhomogeneous term involving products of and $(a, resonates with the 
subharmonic $(a,. In  the terminology of the multiple-scales approach, which will be 
adopted here, this particular case of parametric resonance results in the subharmonic 
at leading-order p being modified by the presence of the fundamental on the slow 
space and/or timescales 

G = a x ,  i =  at. (2.3) 

Such a resonance, however, can only occur under the following conditions : (i) the 
frequency ratio of the modes (a )  and (p) is approximately 2 to 1 ; (ii) their real phase 
speeds are sufficiently close to allow a sustained interaction; and (iii) the sum of their 
growth rates is approximately equal to the growth rate of the subharmonic alone. 
This last condition is necessary because in a homogeneous mixing layer growth rates 
cannot in general be considered as small. While this is obvious a t  a velocity ratio R 
of unity, where the maximum spatial amplification over one wavelength is by a 
factor of about 30, it  will be shown below that the same arguments apply for all R 
compatible with this approach. 

Upon inspection of the linear stability diagram, reproduced in figure 3, the 
conditions (i)-(iii) immediately narrow the choice of the two modes to a fundamental 
close to neutral and a subharmonic close to maximally amplified. This is the only case 
where a resonant interaction between the two modes can occur. The situation is no 
different in the temporal case considered by Kelly (1967). Although condition (ii), 
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FIGURE 3. ( a )  Spatial amplification rate -k, normalized by R,  and ( b )  real phase velocity 
c, = w / k , ,  normalized as (cr- 1) /R2 ,  versus frequency for the hyperbolic-tangent mixing layer 
(adapted from Monkewitz & Huerre 1982): -, R = 1; -.-, R = 0.7; --, R 4 1. 

requiring equality of the real phase speeds, is satisfied for any pair of temporal 
modes, (iii) again leads to the choice above. It is noted here that Kelly did not enforce 
condition (iii) in his analysis, although he did consider in his $4 (example 3 of case A) 
the situation where the fundamental is neutral (cf. his table l), among other cases 
where resonance is induced by implicitly assuming small growth rates (cf. also 
Monkewitz 1982). 

Summarizing this discussion, the subharmonic growth rate is considered an order- 
one quantity, which automatically limits resonances to  interactions linear in the 
subharmonic and to self-interactions of the near-neutral fundamental (starting with 
a3). In  particular, the subharmonic does not react back on the fundamental in a 
resonant fashion a t  order p2, a behaviour which follows here naturally from 
condition (iii) as opposed to being assumed as in Kelly (1967). As a further 
consequence, the saturation of the subharmonic is beyond the reach of the present 
analysis or, in other words, the evolution of the subharmonic can be corrected for the 
presence of the fundamental only in the region where, by itself, it would follow linear 
theory. In  this respect the analysis differs from the classical weakly nonlinear theory 
which, under the assumption of small growth rates, produces results uniformly valid 
in space and time. Nevertheless, in the limited region defined above, the present 
approach can be extended in a rational fashion to any order in 01 and p. 

At this point, the necessary restrictions on the fundamental and subharmonic 
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amplitudes can be derived. A first condition implicit in the formulation is that both 
a and p are much smaller than unity. However, there is no need to require a priori 
p 4 a as in Kelly (1967). A second limitation becomes apparent when considering the 
small shear limit R+O. In this limit, maximum growth rates are small, O(R) (see 
Monkewitz & Huerre 1982), and hence it is tempting to relax the resonance condition 
(iii). That this is not permitted can be most easily seen by considering Gaster's 
transformation, discussed in Monkewitz & Huerre (1982) : for small R the leading- 
ordcr (in R)  spatial problem is equivalent to a temporal problem. Hence one can get 
rid of the average mean velocity by a Galilean transformation and one is left with a 
disturbance of order a riding on a mean flow of order R. If the ordering implied in 
(2. I )  is to be preserved, one must havc a 4 R. Therefore, when R + 0, the lengthscale 
d for the interaction of interest increases in the same proportion as the streamwise 
distance required for the linear growth of the subharmonic. 

Furthermore, to havc resonance at order ap, the difference between fundamental 
and subharmonic phase speed cannot be larger than O(a).  This is conveniently 
expressed in terms of the 'detuning parameter', to be introduced later by way of 
(2.12), which must be limited to order unity. Noting that this parameter is well 
approximated by -(0.03 R2) /a  (see figurc 3, and Monkewitz & Huerre 1982), and 
combining this with the result of the preceding discussion of the small-R limit, one 
arrives a t  the constraint ( 2 . 4 ~ ~ )  for a. 

Besides requiring mathematical consistency, leading to (2 .4a) ,  the question of 
relevance has to be examined as well. As stated above, the analysis is only valid in 
the region where the subharmonic, by itself, follows linear theory. I ts  modification 
by the presence of the fundamental, which is here of interest, requires on the other 
hand a distance A 2  of order unity (see ( 2 . 3 ) ) .  Therefore, for the theory to yield results 
of practical relevanee, the subharmonic amplitude has to remain small over the 
distance A2 = O( 1 ) .  That is, one has to require p exp [ - k,A2/a]  < 1, which leads 
directly to the constraint (2.4b), where -k, denotes the linear subharmonic growth 
ratc. Otherwise the saturation of the subharmonic, which is not considered here, 
would dominate over the influence of the fundamental. Thus we require 

O(0.03 R2)  < a 4 R, (2.40,) 

p 4 exp[$]. (2 .4b)  

2 .2 .  The disturbance equations 

Introducing the expansion (2.1) into the Euler equation, with $ ( O )  given by ( 2 . 2 ) ,  
yields first a t  linear order the Rayleigh equation for @(a) and $(a), which depend on 
the fast linear instability variables as well as parametrically on the slow variables 
(2.3) : 

According to the previous discussion, the fundamental has to be close to neutral, 
with a non-dimensional frequency w(") = 1 + O(a),  where a small detuning of order 
a is allowed. Hence the subharmonic frequency is given by dfl = $+O(a) .  Using 
multiple scales, the deviations from 1 and +, respectively, are taken up in the 
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dependence on the slow time (2.3), and the solutions of (2 .5) ,  using C.C. for the 
complex conjugate, can be written as 

= A ( 2 , i )  sechyexp[i(x-t)]+c.c., 

$(@) = ~ ( 2 ,  i) +(y) exp [i(~cx-it)l+ C.C. 

The amplitude functions A and B are now determined as usual, a t  order a2 and up 
respectively, by solvability conditions. At order a2 the amplitude function A ( 2 ,  i) is 
obtained from (2.8) below, which has already been given by Huerre (1987) and 
Churilov & Shukhman (1987) under the assumption of a fully viscous critical layer. 
In other words, nonlinear effects in the critical layer are neglected or, equivalently, 
the critical layer Reynolds number as defined by Re,, = Reat is assumed to be much 
smaller than unity, where Re is the Reynolds number based on mixing-layer 
thickness. This choice is motivated by the observation that, despite sizable 
disturbance amplitudes, the experimentally determined growth rate slope dk,/dw 
(w = 1) near the neutral point seems to agree better with viscous rather than non- 

linear critical-layer theory (see Ho & Huerre 1984, figure 2;  for a discussion of 
nonlinear effects see their $2.2). We have 

The factor [1-2iR/n] in (2 .8)  is easily identified as the (complex) group velocity 
of the neutral disturbance which arises naturally in the Taylor expansion of $(a) 

around w = 1. Assuming a small frequency deviation from neutral, da) = 1 +a@=), 
which is taken up into the slow scale t"= at, one has 

In  the following, A ,  will be set equal to unity, so that a can be directly identified 
as the maximum amplitude of the streamwise velocity disturbance associated with 
the fundamental a t  the location 2 = 0 and y = 

Next, the order ap is considered and the following inhomogeneous equation for 
$("n is obtained: 

In [1+ d2] .  

3 \ 
9[$(@)] = C HPB,  

i-1 

(2.10) 

HgP) = J($("), V'$(P)) + J ( $ ( P ) ,  V'~'")). I 
Above, the shorthand J(f, g )  stands for the Jacobian a(f, g)/a(x, y). The first two 

H("n arise from the dependence of I+@) on the slow scales 2 and i, while the third 
H represents the interaction term. This last HF@ produces the two frequencies 
w = 1 +-++ O(a) .  Therefore, part of this term will resonate with the subharmonic. 
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Recalling that the yVa) and +(fl are twice the real part of the complex expressions (2.6) 
and (2.7), the fast-scale behaviour of the part of H$@‘ with the frequency +i is 

~ p f l  cc ei(r-t)[ei(kx-ft)~* (2.11) 

where the asterisk is used to indicate the complex conjugate. This can be manipulated 
to reproduce the fast-scale behaviour of $(p) as follows: 

x -  t - (k, - iki)x + it = kx -at + 2 ~ 2 ,  

K a-’(i-kr) < o(1). J (2.12) 

The above rescaling of the ‘ leftover ’ term (i- k,) x is only legitimate when the real 
phase speed of the subharmonic is close to unity, i.e. to the phase speed of the neutral 
fundamental. This condition is satisfied by the present choice of modes since for, say, 
R = 1, (i- 12,) = - 0.0274 at w = t. Thereby the parameter K determines the degree of 
detuning of the resonance and will henceforth be referred to as the detuning 
parameter. It is noted here that in the spatial case under consideration no perfect 
tuning of the subharmonic resonance is possible, since no pair of modes can be found 
(see figure 3) which simultaneously satisfy exactly all three resonance conditions 
discussed in the last $ 2.1. 

After this rearrangement of the interaction term, a solvability condition has to be 
applied to (2.10) which requires that the right-hand side be orthogonal to the solution 
of the adjoint Rayleigh equation, i.e. to {$(y)[@)- 1/(2k)]-1]*. To compute the 
ensuing integrals, first the Rayleigh equation is solved for $ ( y )  at w(fl  = i. The 
eigenfunction is normalized to $ ( O )  = 1,  which yields a maximum non-dimensional 
amplitude of the streamwise velocity disturbance 1$,(y = -0.06)( = 0.822. The 
integrals are then computed numerically by Simpson’s rule over the central portion 
of the mixing layer and analytically outside the computational domain, using 
asymptotic representations of $ (see Monkewitz & Huerre 1982). From this, one 
obtains the equations for the subharmonic amplitude B and its complex conjugate 
B* 3 

B,+pBc+rA(i ,  i) B* exp (2i~G) = C.C. = 0. (2.13) 

The constants p and r only depend on the velocity ratio R, and their behaviour in 
the limit R --f 0 is worth noting here : the inverse group velocity p approaches unity and 
r has the expansion r = -0.9648 -0.063iR -0.48R2 +O(R3) .  As has to be expected 
from the extension of Gaster’s transformation discussed in Monkewitz & Huerre 
(1982), r assumes a t  R = 0 the value already found by Kelly (1967) in the temporal 
case (his quantity ,u for case (3) of his table 1) .  The values for p and r are compiled 
in table 1 for different values of R. Also included in the table is a quantity q / R  which 
will be introduced in $ 4  in connection with the modelling of non-parallel effects 
and a critical a, to be discussed in the next section. At this point, the quality 
of the expansion of the subharmonic around w(p) = i can be assessed on figure 4, 
where the exact dispersion relation k ( w )  is compared to the linearized relation 
k(w) M k($)+p(w-$) .  Fortunately, w = & lies to the right of the most amplified 
frequency, so that increasing non-dimensional frequency (e.g. a growing mixing 
layer) leads to a decrease of the linearized growth rate. The associated neutral 
frequency is, however, too high (1.28 a t  R = 1 and 2.86 a t  R = 0.1 as opposed to 1). 

To solve the amplitude equation (2.13), using the result (2.9) for A(&,;)  with 
A,, = 1,  the frequency of the subharmonic is taken to be d p )  = i + E ( $ Q ( ~ )  + Q(p) ) ,  thus 
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R P PIE r a, x 1 0 2  

1 .0 (1.3332+0.27681) (0.3539 - 0.13921) ( - 1.8024 - 0.24471) 1.507 
0.8 (1.1965 +0.1366i) (0.2897 -0.105%) (-1.3890-0.1118i) 0.978 
0.6 (1.1016+ 0.0720i) (0.2565 - 0.07391) ( -  1.1678-0.05761) 0.552 
0.4 (1.0425 +0,03781) (0.2386 - 0.04671) ( - 1.046 1 - 0.03029 0.245 
0.2 (1.0102 +0.0165i) (0.2296 -0.0226ij (-0.9840-0.0132ij 0.061 
0.1 (1.0025 + 0.0080i) (0.2275-0.0112i) (-0.9696-0.0064i) 0.015 

TABLE 1 .  The coefficients of (2.13) and (4.5), and the critical fundamental amplitude a, as a 
function of the velocity ratio R 

'\ 

/+- 
I 

10.25 

J 

FIGURE 4. Spatial eigenvalue k,+ik, versus frequency for R = 1 (-) with linearization around 
w = 0.5 (--). 0, -k i ;  m, t - k , .  

allowing a small deviation uQ(fl) from the exact 1 : 2 relationship between 
subharmonic and fundamental. This leads to the following structure of the solution : 

~ ( i ,  l) = exp [+iQ@)(pG - $1 { ~ + ( 2 )  exp [iQ(p)(p$ - l)] + B-($) exp [ - iQ(p)(p$ - ;)I>. 
(2.14) 

Insertion into (2.13) yields four ordinary differential equations for B* and B**, 

B;+rB'*exp { i2 [ ~ K + Q ( ~ )  (n-;iE ___- pr)T2ipiD(m]} = C.C. = 0. (2.15) 

From this, two second-order equations for B' can be derived. The boundary 
conditions though, imposed, say, a t  2 = 0 in terms of real amplitudes B$ and phases 
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;Ok, have to be derived from the original first-order equations (2.15), as B+(O) and 
B i  (0) cannot be prescribed independently. We then have 

{ n2 + 4R2 4Rrt fp)i = 0, (2.16) I -Jr)2B' exp - 

B'(0) = B$ exp($iO*), B i ( 0 )  = -rB'*(O). (2.17) 

Before proceeding to the next section it is worth noting that the above equations 
have closed-form solutions in terms of modified Bessel functions : in simplifying the 
notation, the equation 

f2, - c,fi - c z  exp (72) = 0 (2.18) 

has the general solution 

f = exp (;cl i )  C, IeI ly  - exp ( $ 7 4 1  + C, Kel ly  exp (ki)]}. (2.19) i 
The order of the modified Bessel functions I and K is in general complex, which 
makes the evaluation of such a solution unattractive. Instead, a simple fourth-order 
Runge-Kutta scheme is employed for all examples following in the next sections. 

3. Results for a parallel mixing layer 
3.1. The critical fundamental amplitude 

First the very simplest case is addressed, where the frequency deviations Q(") and 
Q(*) in (2.14) are zero. In  other words, one is dealing with an exactly neutral 
fundamental and its exact subharmonic. For this situation the two amplitudes B* 
are identical and are merged into one quantity B. The equation (2.16) then becomes 
of the constant coefficient type, 

B,, - 2 i ~ B ,  - (r('B = 0, 

B(0) = B, exp (@), 

B,(O) = - rB*(O), 

and is readily solved to yield 

~ ( 2 )  = B, e-i\i-i2{ e2 'io + G[il,J egis - re-ii"l>, K = - Irl. (3.2b) 

At critical conditions K, = -Jrl, the solution (3.20,) changes from oscillatory to 
exponential behaviour via the linear behaviour (3.2 b) .  This transition lends itself 
directly to physical interpretation. Using the definition (2.12) of the detuning 
parameter, the critical K, translates into a critical fundamental amplitude 

a, = l;-krl (3.3) 
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FIQURE 5.  Evolution of the subharmonic amplitude for 01 = ;ac and different initial phase angles 

( p - 8 ) ;  A, 0;  0, iff; V, 71; 0, $ [ R  = 1, p = 1.04371, LP) = l2@ = 01. 

which is also listed in table 1 for different values of R.  An excellent fit for a, is given 
by a, z 0.0153R2. It is noted here that for perfect tuning, which is achieved in the 
temporal case, the critical amplitude is zero. 

For an amplitude a below critical, the amplitude function B which multiplies the 
exponential growth factor of the subharmonic is oscillatory, as illustrated by figure 
5 .  The parameter varied in this figure is the initial relative phase angle 8 in (3.1), 
which has been combined with the phase angle of the constant r = Irl exp (ip) for 
convenience. Also included in the figure is the total real phase velocity of the 
subharmonic, which is calculated as follows : after reconverting all slow scales into 
fast ones, the subharmonic has the general form 

A x ,  t )  = IMx, t)l exp [i9(x7 t)l 
with g real. The phase velocity is then given by c, = g,/g,. Practically, g, and g, are 
best computed by using g, = OP in this case and g, = Im[ f,/f], where f, is readily 
available either analytically in special cases or from the numerical integration of 
(2.16). It is seen from figure 5 that the phase velocity deviates also in an oscillatory 
fashion from the linear value c, = 0.948 (indicated by the dashed line) in such a 
manner that the points of maximum amplitude B in the cycle correspond to the 
points where c, is closest to 1, i.e. where the conditions for resonance are most 
favourable. 

The next figure 6 shows the development of (BI and c, for a = a,. The most striking 
difference from the previous case is that now the real phase velocity asymptotically 
approaches 1 like &z while the amplitude reaches the asymptotic linear growth with 
slope Irl [2  - 2 sin (p - In  physical terms, the fundamental is now strong enough 
to produce a phase-lock with the subharmonic for optimum sustained interaction. 

This leads directly to the case with a > a,, of which an example is shown as figure 7 .  
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FIQURE 6. Same as figure 5, except that u = u,. 

The initial transient to produce the asymptotic optimum phase-lock by locally 
speeding up or slowing down the subharmonic is more violent, as c, now approaches 
1 exponentially. Also very obvious is the fact that, although the initial slope 

with 
(3.4) 

depends trigonometrically on the phase angle 8, all but one angle lead, after a 
transient, to the same asymptotic exponential growth proportional to exp ( + a x )  (cf. 
( 3 . 2 ~ ) )  which comes on top of the linear growth. The only angle which, in this simple 
case, produces a sustained exponential decay of B is given by 

(p  - e),,,,, = tan-’[a,(a2 - a:)-”, (3.5) 

which is 0 . 0 6 4 ~  for a = 501, on figure 7. This pure decay is only possible for a truly 
parallel flow and SZ(a) = SZ(B = 0, and is unstable with respect to an infinitesimal 
disturbance of the initial angle given by (3.5). Therefore it will not be encountered 
in nature. Furthermore it is noted that most angles only lead to minor amplitude 
transients and to a B(2) substantially similar to the one produced by the optimum 

Associating enhanced subharmonic growth with what is commonly called ‘pairing ’ 
and ‘shredding’ with large ‘dips’ in IBI, i.e. with a reduction of total growth rate over 
a substantial streamwise interval, this explains why in experiments the pairing 
interaction is so heavily favoured. The bias is in fact so strong that, to the author’s 

e. 
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FIGURE 7 .  Evolution of the subharmonic amplitude for a = 5a, and different initial phase angles 
( p - 0 ) :  A, 0; A, 0.064~;  0, fn; V, 1.064n [R = 1 ,  p = 1 . 0 4 3 ~ ,  Qca) = C?@ = 01. 

knowledge, it has been impossible to  map out (by conditional-sampling techniques) 
the vorticity field during shredding. The occasional occurrence of shredding has only 
been inferred from flow visualization or indirect measurements. 

At this point it is also instructive to investigate the asymptotic phase relation 
between fundamental and subharmonic after the phase-lock is established and B 
grows exponentially. First it is noted that this ultimate phase relation is the same for 
any initial angle 0 except for the one given by (3.5). To facilitate its physical 
interpretation, the vorticity extrema of the fundamental and the subharmonic are 
examined. Their relative position is indicated on figure 8(a )  for all the cases of 
ultimate exponential growth and 8 ( b )  for the case of exponential decay characterized 
by (3 .5) .  Positive vorticity is thereby defined as being of the same sign as the mean 
vorticity. It is seen from this figure that the arrangement ( a )  is precisely the one 
which leads to pairing in the numerical work of Patnaik et al. (1976), with the ‘core ’ 
of the subharmonic midway between the cores of the short wave. The ‘core’ of the 
subharmonic, following their terminology, is located approximately midway between 
its two local maxima which have been connected for clarity on figure 8 (cf. their 
figure 13). Correspondingly, the case ( 6 )  leads to  shredding. If the maxima in figure 8 
are viewed as concentrated vortices, the difference between (a)  and ( b )  can also be 
understood in terms of vortex interactions: while in ( a )  the subharmonic ‘vortices’ 
displace the fundamental ‘ vortices ’ (solid symbols), thus creating more subharmonic, 
their influence on the fundamental in ( 6 )  approximately cancels. 

One may ask now whether the concept of critical fundamental amplitude has any 
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FIGURE 8. The asymptotic phase-locked arrangement of the subharmonic vorticity maxima 
(0,  clockwise) and minima (0) relative to  the fundamental maxima (0 ,  clockwise) for (a )  
p-19 9 0 . 0 6 4 ~ ~  and (b )  p--8 = 0.06411. The other parameters are as in figure 7 .  The resulting dis- 
placement of the fundamental ‘vortices’ is indicated by arrows. 

- I  J 

1 

cr 

0.9 

1 2 
I I 

I 

FIGURE 9. The evolution of the subharmonic amplitude ( 0 )  under the influence of a grow- 
ing fundamental with Qcu) = - l ,  starting at a subcritical amplitude a = +ac [ R  = l ,  52‘8) = 0, 
p - 0  = a]. The location where the fundamental reaches critical amplitude is indicated by an 
arrow. V,  reference case with neutral fundamental and same initial conditions. 

merit in cases other than the very special one considered above. To answer this 
question (positively) two situations are considered : one with an amplified 
fundamental starting a t  half the critical amplitude, and a second with a damped 
fundamental starting a t  twice the critical amplitude. The fundamental amplitude 
thus crosses critical from below and above respectively, and the results shown on 
figures 9 and 10 clearly demonstrate that a t  these locations the behaviour of B 
changes from oscillatory to (double) exponential growth and vice versa. 
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FIGURE 10. The evolution of the subharmonic amplitude (0 )  under the influence of a damped 
fundamental with Q(") = + 1, starting a t  a supercritical amplitude a = 201,. Otherwise as in 
figure 9. 

Next, numerical and experimental evidence for the above findings is considered. 
First, the effect of phase on the interaction is amply documented in numerical studies 
by Patnaik et al. (1976), Riley & Metcalfe (1980) and others. What is not documented 
in these simulations are the initial transients most prominent on figure 7 .  They were 
found in a related calculation by Collins (1982), reproduced here as figure 11.  It has 
to  be pointed out, though, that  this example deals with a stratified Holmboe flow 
where, owing to the added dimension of Richardson number, more resonances are 
possible; in particular, figure 11 shows the amplitude of a temporally amplifying 
fundamental interacting with a neutral subharmonic, the opposite of the situation 
considered in this paper. Nevertheless, the qualitative correspondence is encouraging, 
as the interaction considered by Collins could be treated along the same lines as the 
present problem. More recently, Arbey & Ffowcs Williams (1984) have reported on 
experiments in which both fundamental and subharmonic were excited in a circular 
jet a t  a relatively high level. For the case where the subharmonic was excited a t  
a lower level than the fundamental, they found a strong dependence of the 
subharmonic amplitude on the relative phase and a substantially weaker effect on 
the fundamental. This appears to support the present analysis, although other 
explanations cannot be excluded at such high forcing levels. It is only very recently 
that Husain & Hussain (1986) have experimentally documented the effect of initial 
phase angle, including the initial transient behaviour, in sufficient detail to allow a 
generally very favourable comparison with the present results. 

Secondly, evidence is examined for the critical-amplitude behaviour, which is an 
effect strictly associated with spatial evolution. No support has been found in 
numerical work, for lack of spectral information. The strongest direct evidence for 
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FIGURE 11. Amplitude evolution of the fastest growing wave interacting with its neutral 
subharmonic as a function of their relative phase p, for (stratified) Holmboe flow after Collins 
(198'7) i.. --, p, = 0 ;  ------ , p ,  %r. -- 3 II' , -. .-, fastest growing wave alone (Reynolds number = 200, 
Prandtl number = 0.72, Richardson number = 0.174, wavenumber k = 0.45). 

this behaviour has been obtained from the extremely clean jet-flow study of Drubka 
(1981). An example of his results is reproduced as figure 12 (Drubka's figure 75). It 
very clearly shows three stages of the subharmonic growth. First there is the initial 
exponential growth. Then, a t  approximately x / D  = 0.1, oscillations around this 
exponential growth set in, leading a t  x / D  = 0.33 to a distinct break in the growth 
rate, which assumes a higher value until the fundamental starts decaying. This 
behaviour bears a striking qualitative resemblance to figure 9, which encourages a 
quantative check: in all the cases with clean potential flow (Drubka's case 1L) the 
values of the fundamental amplitude a, have been estimated at the points where the 
growth rate changes abruptly. As the measurements are only reported on a ray of 
constant mean velocity, these estimates, gathered in table 2, are rather inaccurate. 
However, both the oscillatory behaviour and the break in growth rates have been 
fully confirmed by more complete measurements involving cross-stream traverses 
(H. Nagib, private communication). Although the theoretical assumption of a 
neutral fundamental is considerably strained a t  these low values of a, the estimated 
01, are found to be of the same order as the theoretical value of0.015 predicted for 
R = 1. In  addition, the growth-rate modification due to the presence of the 
fundamental with amplitude a = 0.06 and saturation amplitude a = 0.15 is indicated 
of figure 12 and compares favourably with the data. 
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FIQURE 12. Development of the initial axisymmetric mode (0) and its subharmonic (0 )  along the 
ray I J / U j  = 0.6 in a circular jet with Re, = 42000 after Drubka (1981). --, linear subharmonic 
growth; -.-, growth-rate modification for a = 0.06; -. --, growth-rate modification for a = 0.15. 

Re, x loL4 a?’ 
3.4 0.018 (+20%) 
4.2 0.016 (+ 7 % )  
5.2 0.008 ( - 47 yo) 
8.0 0.007 ( - 53 yo) 

TABLE 2. Critical amplitudes ape) estimated from Drubka’s (1981) jet flow study, with percentage 
deviation from the theoretical prediction a, = 0.015. Cases are identified by Reynolds numbers. 

3.2. The excitation of a sideband of the subharmonic, and amplitude modulation 
Another feature of subharmonic resonance which is not easily accessible to numerical 
simulations using periodic boundary conditions in the streamwise direction, is the 
amplitude modulation resulting from the excitation of a sideband of the 
subharmonic, i.e. of a pair of modes with a frequency ratio slightly deviating from 
2:  1 .  To simplify matters, the fundamental is chosen to be exactly neutral, i.e. 
da) = 1, and the subharmonic is forced a t  dfl) = &+aQ(h. From (2.14) it is clear that 
the symmetric sideband a t  o = &--aQ(P) will also emerge, resulting in a strong 
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amplitude modulation of the subharmonic for sidebands sufficiently close to w = t .  
With the simplified boundary condition where only one sideband is excited, 

To show the structure of the above solution more clearly, an approximation 
small Q(P) is developed. It turns out that  the following combination E is 
appropriate expansion parameter : 

for 
the 

e E Q(flpi 1rl-l < I .  (3.8) 

Introducing the notation n = a,/a, the detuning parameter K,  defined by (2.12), 
can be written as K = - Irln. With this, the result (3.7) is expanded up to linear order 
in E .  Furthermore, attention is concentrated on the asymptotic region of exponential 
growth of B*, where the terms proportional to exp (p-2) and exp (v-2) are negligible 
and can be discarded. After a fair amount of straightforward algebra one finds for the 
stream function +(fl, using ( 2 . 7 )  and (2.14), 

where (;) cpl = p+x+tan-l  

2v, = p - 0 + n - tan-' - enN-2, ($1 
01 

n = A < I ,  
a 

N = [1-n2]i = O(1). 

This approximate form of the solution is now amenable to discussion. It is seen 
from the example shown as figure 13 that the two amplitude functions B+ and B- 
very quickly reach a comparable magnitude, but that the real phase speed of either 
sideband does not approach 1 as before. What happens is that the two sidebands 
combine to an amplitude modulated subharmonic where the carrier has a phase speed of 
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FIGURE 13. Amplitude evolution of the two sideband amplitudes B+ (0) and B- (A) with 
excitation of B+ alone. [ R  = 1, 52'") = 0, 52th = 0.2, a = 5ac, p - B  = n]. 

unity for optimum interaction, while the modulation moves at a different speed C 
given by (3.9) which depends on n = a,/a. In  the limit n-t 1 the above expansion 
(3.9) is obviously not valid since N --f 0. As a increases beyond a, the modulation phase 
speed C first goes through an unphysical singularity near n x 1, then decreases 
and, for R = 1, crosses C = 1 a t  n = 0.77. For large amplitudes (i.e. n+O), 
C then approaches from above the asymptote pF1 which is well approximated by 
C ( n  = 0) x 1-0.25R2 (cf. table 1). Furthermore, as long as the condition (3.8) is 
satisfied, the modulation is almost total, i.e. the ratio of minimum to maximum 
amplitude is e / 2 N  4 1. 

When looking for evidence of amplitude modulation (AM) in the mixing layer, one 
finds that modulation is ubiquitous except in experiments with controlled forcing. 
Monkewitz (1983) has investigated the AM of the initial disturbance in a circular jet 
where it appears to be generated a t  the nozzle lip. This is a special case, though, since 
the initial disturbance is the only shear-layer mode that is not the subharmonic of a 
mode peaking further upstream. Therefore the mechanism of AM generation 
considered here cannot apply to the initial disturbance. The modulation, however, is 
still present after many pairings, as shown by Browand (1966) and others (cf. 
Browand's hot-wire traces). Furthermore, beyond the initial disturbance, the 
modulation frequency appears to  scale with the local ' carrier ' passage frequency 
d b )  and is of the order of O.lw(@. It is in this region that an explanation for the 
pervasive amplitude modulation of instability waves in mixing layers is proposed. 



Resonance, pairing and shredding in the mixing layer 243 

The comparison of the result (3.7) or (3.9) with measurements rests on the choice 
of Q(n. To pick a particular frequency detuning Q(n, one may argue that in the early 
stages, given a reasonably broadband forcing (controlled or uncontrolled), the 
linearly most amplified mode a t  dmax) is likely to compete with the mode a t  w = t .  
It is therefore reasonable to choose as a typical detuning laQ(n1 = Idmax)-+I which 
is approximately equal to 0.08 at R = 1. Some support for this choice is obtained 
from figures 12 and 13 of Laufer & Zhang (1983) where, despite the forcing, two 
sidebands of the first subharmonic fi are clearly visible and separated quite 
accurately by k0.08f0 from the main peak. Further downstream where the second 
subharmonic grows fastest (their figures 14-17) there is only a scant indication of 
sidebands but the peak fi is much broader and in fact has a width of approximately 
0.15 fi, thus including the two typical sidebands. 

From this, the following picture emerges for the spectral evolution of a 
subharmonic under natural excitation : Initially, the spectrum contains a wide range 
of frequencies around the subharmonic, i.e. noise, with a small peak a t  the exact 
subharmonic which is possibly due to a weak feedback mechanism as postulated by 
Laufer & Monkewitz (1980). First, this spectrum develops according to linear theory 
with, in addition to the exact subharmonic peak, a broad peak forming around dmax). 
Then the subharmonic waves enter a region where the fundamental has an 
amplitude sufficiently larger than critical. There, the resonant interaction boosts the 
range of frequencies where it is most effective and produces the final pronounced 
spectral peak. Prom the above discussion and from the inspection of ($-kr) on 
figure 4, this range of effectiveness or minimal detuning appears well characterized 
by Idmax) -;I. In addition to significantly boosting the frequencies close to the 
subharmonic, the resonance does also ‘symmetrize ’ the spectral peak with respect to 
exactly half of the fundamental frequency no matter how skewed the peak is before 
the resonance. This is achieved by the production of symmetric sidebands, as shown 
by the example of this section (figure 13). This plausible scenario is capable of 
providing an explanation for features of the mixing layer that have so far eluded 
theoretical interpretation, such as the widely observed amplitude modulation of 
instability waves as well as the width and symmetry of the subharmonic spectral 
peak under ‘natural’, i.e. low-level and broadband excitation. A test of this proposed 
sequence of events, however, is lacking except for some very recent experiments by 
Husain & Hussain (1986) who systematically excited sidebands of the subharmonic 
and found encouraging support for this aspect of the suggested scenario. 

3.3. The case of slightly oblique subharmonic waves 
So far only the purely two-dimensional case has been considered. However, the real 
mixing layer has a distinct spanwise structure. Apart from a ‘streakiness’ on a small 
scale which will not be addressed here, the large-scale structures are known to have 
a large but finite ‘aspect ratio’, as shown by Browand & Troutt (1980, 1985) and 
others. This latter observation may be modelled by considering a triad resonance 
between the two-dimensional fundamental and a pair of oblique subharmonics. In 
the planview, this results in a regular diamond pattern of subharmonic large-scale 
structures which can be interpreted as in the process of ‘helical pairing’. The 
question is naturally whether a triad resonance can be found which is stronger than 
the two-dimensional resonance considered so far. 

Formally, the following extension of the analysis is closely related to the work of 
Craik (1971) and more recently Smith & Stewart (1987) in the boundary layer. 
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However, the reader is reminded that the scope of the analysis is limited by the large 
subharmonic growth rate, as discussed in $2, whereas in the boundary layer growth 
rates approach zero in the limit of infinite Reynolds numbers. The problem is now 
analysed by using Squire’s transformation in the inviscid form (see Drazin & Reid 
1981). With it, the problem of an oblique wave, labelled 3D, with complex 
streamwise wavenumber k,, and real transverse wavenumber y is transformed into 
an equivalent two-dimensional problem, with 

(3.10) 

For the spatial case this transformation implies complex frequency and wavenumber 
in the two-dimensional problem. For small transverse wavenumbers y ,  the 2D and 
3D cases can be approximately related as follows. Using the Taylor expansion of the 
dispersion relation around w = 4, one has 

w2D = + y2Aw, 
\ 

k,, = k+y2%( dw Aw+O(y“).J 
I (3.11) 

In order to describe the evolution of the real frequency wQD = g- y2Q, allowing for a 
small deviation from a, Aw in (3.11) has to be chosen as Aw = f(k-”-Q. With 
dk/dw = p  (cf. table l), k,, is then obtained as 

(3.12) 
WQD = 4- y2Q, 

k,, = k + y 2 1 p ( ~ k - 2 - Q ) - ~ k - 1 ] + O ( ~ 4 ) .  

For the velocity ratio R = 1 this yields (numerically) 

k,, = (0.5274-0.2155i)- y2(0.2288-0.5394i)- y2Q(1.3332+0.2768i). (3.13) 

Thus the real part of k,, can be made equal to t .  For, say, Q = 0 this is achieved with 
a transverse wavenumber y = 0.35. Hence the associated detuning parameter K (cf. 
(2.12)) is zero and the resonance is enhanced. The growth rate -k,,,,, on the other 
hand, is decreased a t  the same time from 0.2155 to 0.151. Such a three-dimensional 
subharmonic could therefore only grow faster than the 2D subharmonic if the 
difference in linear growth rates is compensated by a larger nonlinear boost. Since the 
nonlinear growth-rate modification is significantly affected by the detuning only for 
01 values close to critical, it  appears that the two-dimensional resonance has a slight 
edge over the triad resonance. The difference, however, is so small that in an 
experiment the selection process for y is most likely governed by higher-order effects 
and/or facility characteristics. This result is entirely in agreement with the 
investigation of Pierrehumbert & Widnall ( 1982) who treated the subharmonic as a 
secondary instability and found its temporal growth rate to be quite insensitive to 
the transverse wavenumber in the range from y = 0 to about 0.3 (cf. their figure 5, 
noting that their p equals 2a). 
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4. The pairing and shredding interaction and the modelling of non-parallel 
effects 

In this section an attempt is made to analyse the essential ingredients of the so- 
called pairing, and of the mostly numerically observed shredding interaction. The 
main question here is how much of it is really due to a genuine mode interaction and 
how much can simply be explained by wave kinematics. To make the point, it is first 
demonstrated that an extremely simple kinematic model is indeed capable of 
reproducing what is perceived as a pairing in a typical flow-visualization experiment. 

To keep matters simple, one-dimensional waves without transverse structure are 
chosen to represent disturbance vorticity integrated across the mixing layer. A local 
maximum of such a vorticity wave can therefore be directly identified with a marker 
(dye) concentration in a flow-visualization experiment (cf. Corcos & Sherman 1984). 
As ‘pairing ’ is observed after the saturation of the short wave, the fundamental is 
taken to be of constant amplitude for simplicity. The subharmonic, on the other 
hand, is chosen to grow exponentially a t  the constant rate - ki and to have the same 
phase speed c as the fundamental. Linear superposition then yields the following 
expression for the vorticity disturbance : 

T ( x , t )  = - c o s [ x - c ~ t ] - B e ~ ~ i ~  cos[$(x-ct)+cp]. 

If now the instantaneous local maxima of this function r are traced on an x-t 
diagram, using a set of quite realistic parameters (see figure 141, the result is 
startling : one recovers the typical pairing history of two vorticies as obtained from 
a flow-visualization movie. That is, the model correctly predicts the alternate 
speeding up and slowing down of vortices even though the phase speed c is taken to be 
a constant ! This is evidenced by a comparison with unpublished visualization data 
of C. M. Ho (private communication) on figure 14(a,b), where c, denotes the 
observed speed of the dye concentrations and the computed speed of the 
instantaneous local maxima of r respectively. It is noted, however, that the details 
of the pairing associated with transverse vortex displacements (see Zaman & Hussain 
1980) are lost in this one-dimensional model. 

In a next step one would like to  incorporate the saturation of the subharmonic into 
a more sophisticated model of the pairing and shredding ‘interaction ’ in order to 
investigate whether additional features such as transverse structure can be captured. 
For this purpose, following Huerre & Crighton (1983), a slightly non-parallel mean 
flow is introduced into the formulation of $2. As a consequence, the analysis is no 
longer mathematically consistent, i.e. can no longer be extended to arbitrary orders, 
and therefore becomes an ad hoc model. The reason for this is that  the ordering of 
terms, imposed by the weakly nonlinear formulation of mode interactions, is upset 
by the early introduction of ‘mean-flow correction’ (see also the discussion in Q 1) .  An 
additional problem arises when, as in most studies of this type, the assumed non- 
parallel mean flow does not satisfy the basic equations. The reason for selecting the 
slightly non-parallel approach is the fact that the inconsistencies mentioned above 
only manifest themselves beyond the orders a2 and UP considered in this study. On 
the other hand, one would have to confront these inconsistencies explicitly with a 
slowly diverging formulation, or with the approach of Cohen (1986), which came to 
the author’s attention during the revision of this paper. Another approach, not 
considered here, is to use shape assumptions and an energy method (see for instance 
Liu & Nikitopoulos 1982 and Mankbadi 1985). 

The essence of the slightly non-parallel approach (Huerre & Crighton 1983) is that 
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FIQURE 14. (a )  Trajectories and velocities c,  of dye concentrations (vortices) in an organized water 
jet of Re = 5000 (from C. M. Ho, private communication). Two consecutive vortices are depicted 
with one slowing down (-) and the other accelerating (--) during pairing. ( b )  Corresponding 
trajectories and velocities of the instantaneous local maxima of the 'vorticity wave' (4.1) with 
c = 1, B = l , - k i  = 0.15 and p = 0. 

the mean-flow divergence is required to be not only slow but small as well. That is, 
the vorticity thickness S, is now a function of the slow 4 (chosen to be the same as in 
$2)  and deviates only little from 26,, where the reference length 6, is conveniently 
identified with half the vorticity thickness a t  the station 4= 0, a t  which the 
fundamental is neutrally stable. It can therefore be written as 

Introducing this variable thickness into (2.2) and expanding in powers of 01 leads 
to 

y%F) = 1 + R tanh [y( 1 +ad)-'] (4.3a) 

(4.3b) z 1 + R tanh y - u R d ( 4 ) y  sech2y. 

Expression (4.3b) is then integrated and introduced into (2.1) in lieu of the parallel 
mean flow. This leads to additional inhomogeneous terms in the equations at order 
u2 and up, and hence, after applying solvability conditions, to additional terms in the 
amplitude equations. Without giving details of the straightforward procedure, the 
fundamental amplitude function A is found to be modified by the slight non-parallel 

I)($) = J d ( 4 )  d4, I 
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a result already found by Huerre & Crighton (1983) for the special case d ( i )  = i. 
Solvability a t  order a/3 leads in an analogous way to the following modification of the 
subharmonic amplitude equation (2.13), where q ,  also listed in table 1,  is a new 
constant related to mean flow divergence : 

B, + p ~ i +  q d ( i ) ~  + r ~ ( i ,  t^, B* exp ( 2 i ~ i )  = C.C. = 0. (4.5) 

The general solution of (4.5) is then finally obtained from 

-(rI2B' exp - { n::JR2 

The equation above represents the slightly non-parallel extension of (2.16). The 
associated boundary conditions (2.17) thereby remain unchanged. 

At this point the vorticity thickness has to be specified. It has been recognized in 
the past that in experiments where the saturation of a mode is localized by forcing, 
i.e. where jitter is eliminated, the mixing layer grows in a step-like fashion (cf. Laufer 
& Monkewitz 1980; Ho 1982 and the experimental data of Zaman & Hussain 1980; 
Ho & Huang 1982). Thereby each successive step represents the mean-flow correction 
(in weakly nonlinear parlance) associated with essentially one mode in a subharmonic 
sequence. As shown on figure 24 of Ho & Huerre (1984) one can therefore isolate a 
'universal step ' over which the mixing-layer thickness is doubled. Guided by these 
experimental findings, the vorticity thickness (4.2) is now defined by superimposing 
a sequence of self-similar 'universal steps'. Each 'step', in turn, is given in 
normalized form by the function S(6) which is somewhat arbitrarily chosen to be the 
integral (4.7) of sech 6: 

X(g) = -+- sin-'[tanh<], (4.7) 
1 1  
2 7 c  

&(X) = 2-"h[x-x0-(2n- 1)LI. 

In  the above expression, L is the distance between 'steps'. The non-dimensional L 
corresponding to the experimental average spreading rate of 8: x 0.18R is 
approximately 47cIR or 2/R times the fundamental wavelength. The quantity xo 
defines the location of the step relative to the saturation of the fundamental. The 
constant A, finally, is chosen such that far upstream each ' mean-flow correction ' S 
grows exponentially a t  twice the maximum spatial growth rate, as suggested by 
weakly nonlinear theory. This leads to h GZ R, and a maximum local slope 8: of twice 
the average. 

A realization of (4.7) and (4.8), which will be used to 'produce' a pairing, is shown 
as figure 15 (a) ,  with all the parameter values listed in the caption. The corresponding 
average spreading rate of = 0.154 lies well within the scatter of experiments. Then, 
with the vorticity thickness of figure 15 (a ) ,  the fundamental amplitude (4.4) and the 
subharmonic amplitude, resulting from the integration of (4.6), are determined for 
zero frequency detuning 52'") and Q(n, and zero phase shift in the boundary 
conditions (2.17). As discussed in $3, this latter choice leads to an enhanced 
subharmonic growth, i.e. to optimal pairing. The results are plotted on figure 15 ( b )  
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FIGURE 15. (a )  Mixing-layer thickness defined by (4.7) and (4.8), and ( b )  corresponding maximum 
streamwise velocity disturbance of fundamental and subharmonic versus z for the 'pairing ' of 
figure 16 with parameters R = 1 ,  A = 1, z,, = -1.25, L = 12, a = 0.1875, 0 = 0. 

in terms of maximum streamwise velocity amplitude. Both peak amplitudes were 
specified as follows : 01 = 0.1875, which yields a fundamental large-scale structure 
closest to the measurements of Browand & Weidman (1976) (cf. figure 2),  and a non- 
dimensional (with the average velocity !) maximum subharmonic velocity dis- 
turbance dmax) = 0.31. This latter value was arrived at by examining the ratios of 
subharmonic to fundamental peak energies of Ho & Huang (1982). 

The resulting total vorticity contours over two fundamental periods T'") are shown 
on figure 16. It is apparent that  the early part of the pairing is described quite 
successfully by the present model, when compared with data of Browand & 
Weidman (1976) and Hussain & Zaman (1980) who also documented the early stages 
of pairing. It has to  be noted, though, that  in Browand & Weidman's case the 
comparisons rely on Taylor's hypothesis. The alternate speeding up and slowing 
down of vortices is again correctly predicted, as in the simplistic model at the 
beginning of this chapter. In  addition, the tilting of the slowing vortices (see e.g. the 
3rd frame of figure 16 where the 3rd vortex is tilted approximately 5") before 'rolling 
under ' is faithfully reproduced. At t/T(") = 1 the pairing is complete, i.e. the vorticity 
maximum associated with the subharmonic has reached peak amplitude in the centre 
of the frame (cf. figure 15b). At this point the principal shortcoming of the slightly 
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FIGURE 16. Vorticitg contours for the 'pairing interaction' of figure 15 as a function of time over 
two fundamental periods T'"). The size of each frame is 28, x 128,. The vorticity difference between 
contours is 0.2. 

non-parallel model becomes obvious : a t  saturation, the subharmonic-mode shape, 
on a linear basis, should be sech(y), such that it can in turn assume the role of a 
fundamental in the next pairing sequence. In  the slightly diverging formulation, 
however, the subharmonic-mode shape remains frozen. Therefore the subharmonic 
vortex on figure 16 for t /T(@) > 1 still has the two local vorticity maxima 
characteristic of modes close to the most amplified, which precludes the completion 
of the 'rolling over'. Of course, the fundamental-mode shape also remains frozen, 
which appears, a t  least optically, less annoying. In  addition, the model has clearly 
been stretched beyond its limitations by choosing a as large as 0.1875, and by 
prescribing a vorticity thickness (4.8) which starts to double rapidly around x = 8 
(figure 15a), i.e. beyond the first third of the frames of figure 16. 

Attempts a t  reproducing a shredding interaction as computed by Patnaik et al. 
(1976) produced a rather vague resemblance to numerical results, and are not 
reported here. The reason is that  the shortcomings of the model, noted above, 
become more manifest in the shredding case. This concludes the presentation of 
results on a somewhat disappointing note which serves to show the limitations of the 
slightly non-parallel model. 
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5. Conclusions 
It has been shown that many large-scale features of the ‘turbulent ’ mixing layer 

are adequately described by a (locally) parallel weakly nonlinear instability-wave 
analysis. In particular, the existence of a critical fundamental amplitude, required 
for phase locking with the subharmonic and for the modification of its growth rate, 
has been demonstrated and found to be in reasonable agreement with experiment. 
Also, the width of the subharmonic spectral peak and the subharmonic amplitude 
modulation, widely observed in ‘natural ’ experiments, i.e. experiments with low- 
level broadband excitation, are shown to be direct consequences of the subharmonic 
resonance mechanism. No clear-cut conclusions, however, could be drawn regarding 
the preference of the mixing layer for slightly oblique or two-dimensional 
subharmonics since the total streamwise growth rate was found to be only weakly 
dependent upon the transverse wavenumber y as long as y was small. 

In the previous section, finally, the essential ingredients for the pairing and 
shredding process have been investigated by considering two ad hoc models. One is 
a simple-minded kinematic wave model, and the second combines the weakly 
nonlinear analysis of the parallel mixing layer with the slightly non-parallel 
approach of Huerre & Crighton (1983). It appears from the results that the pairing 
in particular consists primarily of the subharmonic ‘ overtaking ’ the fundamental 
without any especially strong interaction between the two. In other words, the strongly 
nonlinear Biot-Savart-type vortex interaction does not seem to be the only way of 
explaining pairing. Along the same lines, it is thought that phenomena often related 
to the visually so striking ‘pairing interaction ’, such as locally enhanced entrainment 
for instance, are chiefly due to the local rapid growth of the subharmonic and the 
associated mean flow modification, which are only relatively weakly affected by the 
fundamental. From the wave description it appears that the principal effect of the 
fundamental (its phasing), which is obviously important for the distinction between 
pairing and shredding, is in the latter case to delay the subharmonic growth to a 
region where the fundamental is already significantly decayed. The ultimate 
subharmonic peak amplitude, thereby, remains largely unaffected (see, for instance, 
Riley & Metcalfe 1980). 

Lastly, the slightly non-parallel model was found to reproduce the transverse 
structure of fundamental and subharmonic reasonably well only in the early stages 
of a pairing. Beyond that point, the mode shape must be allowed to change in order 
to produce realistic results. As a consequence, the fundamental would have to be 
considered well into the damped region da) 2 1, where it is advantageous to use an 
Orr-Sommerfeld analysis in order to obtain mode shapes. 
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